Flite:
a small run-time synthesizer

http://cmuflite.org

Alan W Black (awb@cs.cmu.edu)
Language Technologies Institute
Carnegie Mellon University

flite2001

Flite — Festival-lite

O Small, fast, portable run-time synthesizer
O Festival “compatible”

[0 not a replacement, but companion

O C for size and portability

O Voices get “compiled” into static structures:
— offering same quality as festival voice

O Targets:
— less than 4 meg (flite+lex+diphone voice)
— options to be half (and half again)
— time to speak: less than 0.250 seconds (on ipaq)
— thread safe
— no loading (copying) of data, all const
— no Scheme, no interpreter, no gc

flite2001

Flite: motivation

O Festival is too slow, to big, and not portable:
— “OK, but does it scale ...”
— synthesis advocacy allows no excuses

O Speech technology has to be ubiquitous

O “But its just an engineering problem ..”:
— “we’ll put a team of 20 programmers on it ...”
— need to understand task be a good programmer
— helps to have built previous systems

[0 Research questions:
— trade-off between size/quality /speed
— what’s really necessary in a synthesis engine
— can components be simplified

flite2001

Target audiences

O Embedded systems: PDA:
— local rendering of speech on PDA
— digital radios, books
— toys and games

O Server systems:
— multi-channel telephone dialog systems

O But these are “just” commercial uses:
— No, not exclusively
— these are also for the speech/dialog researcher
— when a component can be easily added it will be

flite2001

Flite components

O Flite library: with CST “C Speech Tools”:

— core code (sh

O Lang:

ared between languages/voices)

— language models: text analysis prosody etc
— lexicon: words plus Its,
— voice: waveforms/mcep/Ipc, index (from festvox/)

Each goes to distinct lib:

libflite.a
libflite_usenglish.a
libflite_cmulex.a
libflite_cmu_us_kal

.a

flite2001

Some general points

O static consts where possible:
— cart trees, waveforms, etc converted C structures
— scheme code used to do convertion

O dynamically allocated vals linking into utt:
— therefore no gc required
— except utterance deletion

O avoid non-const globals

flite2001

Non-global current voices

O Festival: uses notion of “current voice”:
— set as global
— used by each utterance
— (other globals too)

O Flite: link voice with each utterance:
— voice is global (const)
— voice linked to synthesis functions
— (e.g. appropriate text analysis, FO model functions
— and appropriate models, duration cart etc)

flite2001

CST: “C Speech Tools” 1

O audio/:

— output, client/server, (no i yet, o only)
O utils/

— alloc, endian, error, socket, strings

— vals (int fit str, plus user defined)

— features

— tokenstream

O regex/ (Henry Spencer’s regex lib)
— festival compatible

O speech /
— waves, tracks

O stats/
— cart interpreter, viterbi decoder

O hrg/
— items, relations, utts, paths, feature functions

flite2001

CST II: flite

O lexicon/
— lexicon index support
— Its rule interpreter

O synth/
— public flite functions
— generic synth functions (voice parameterisable)
— voice structure, phonesets

O wavesynth /
— diphone (Ipc resynthesis)
— prosody modification
— clunits support (Idom/unit selection), to be completed

flite2001

lang /usenglish/

US English specific models

O text analysis:
— number /symbol expansion
— pretty basic at the moment

O prosody:
— autoconverted CART trees from Festival voices

O phrasing:
— hand written cart and converted

O US English feature functions

flite2001

(set! phrase_cart_tree
’((R:Token.n.name is 0)
((R:Token.parent.punc is ",")
((BB))
((R:Token.parent.punc is ".")
((BB))
((NB))))
((n.name is 0)
((BB))
((NB)))))

static const cst_cart_node us_phrasing_cart_nodes[] = {
0, CST_CART_OP_IS, CTNODE_NO_0000, &val_0000},
1, CST_CART_OP_IS, CTNODE_NO0_0001, &val_0001},
255, CST_CART_OP_NONE, O, &val_0002 },

1, CST_CART_QOP_IS, CTNODE_NO_0003, &val_0003},
255, CST_CART_OP_NONE, O, &val_0002 },

255, CST_CART_OP_NONE, O, &val_0004 },

2, CST_CART_QP_IS, CTNODE_NO_0006, &val_0000},
255, CST_CART_OP_NONE, O, &val_0002 },

255, CST_CART_OP_NONE, O, &val_0004 },

255, CST_CART_OP_NONE, O, 0}};

AR AAAAAA A

DEF_STATIC_CONST_VAL_STRING(val_0000,"0");
DEF_STATIC_CONST_VAL_STRING(val_0001,",");
DEF_STATIC_CONST_VAL_STRING(val_0002,"BB");
DEF_STATIC_CONST_VAL_STRING(val_0003,".");
DEF_STATIC_CONST_VAL_STRING(val_0004,"NB");

static const char * const us_phrasing feat_table[] = {
"R:Token.n.name",

"R:Token.parent.punc",

"n.name",

NULL };

const cst_cart us_phrasing_cart = {
us_phrasing_cart_nodes,
us_phrasing_feat_table

s

lang /cmulex/

O Pronunciations:
— fsm word to pronuciation or “use lts”
— minimised packed lts decision graphs (Black&Lenzo 98)

O lexicon:
— addenda (simple list)
— word list
— 1ts rules
— syllabifier

L] comment:
— the word list /phone list is well over 2.9M for cmulex
— can we remove infrequent words

flite2001

cmu us kal/

Generated from a festvox/ voice

O cmu_us_kal_idx.c
— unit (diphone) index
— compressed pitch periods (coeffs, plus residual)
— autoconverted

0 cmu_us_kal.c
— voice definition
— what gets used for what

flite2001

Current sizes

O no leaks
O thread safe (after short initialization of voice)

O With current 8KHz diphone voice:
— flite code 50K
— usenglish 25K
— cmulex 2.9M
— unitdb 2.1M

O Runtime RAM requirements:
— about 4 x utt duration * sample rate
— less than 1M for 2 chapters of “Alice in Wonderland”

O Speed:
— On 500MHz PIII, about 60 times faster then real time

— 20 mins of speech takes 20 seconds to synth
— thus about 10MHz per port

O Festival (tuned):
— 2.5M code, 20M run-time, 10 times fast than real time

flite2001

Improvement: Streaming synthesis

O Flite (and festival) synthesis
— utterance by utterance
— process full utt, and make full waveform

O Streaming synthesis:
— don’t build full waveform
— play/send as its built
~ must do (all 7) text, phrase, prosodics first
— but waveform regeneration can be streamed

O Flite advantages would be
— time to first noise, less than %50
— reduce mem footprint to 0.25 (at least)

flite2001

Improvement: Unit database compression

O LPC resynthesis:
— Requires LPC coefficients (pitch synchronous)
— Residual (small dynamic range)

O Optimise size vs quality:
— number of coefficients
— quantizing coefficients and /or residual
— (could use spike excited for very small footprint)

O Unit selection:
— re-use units:
— e.g. all diphones into stop can be shared

flite2001

Target footprints

O Very small (will be poorer quality):
— all less than 1M
— compressed minimal lexicon
— streaming synthesis
— spike excited LPC (quantised ?)

O Small:
— 2.5M
— telephone quality speech
— lex, etc as with Festival

O Medium:
—4M
— 16KHz speech

flite2001

Todo...

O Support clunits/ldom
— DB will always be larger than diphone
— build process from FestVox format
— should be fast and much smaller

O Text analysis:
— Should really be using the NSW models

O Fixed point version
0 Documentation

OO0 Some key demostration projects:
—1PAQ), itsy etc

flite2001

First Release

O Intended release end of Feb 01
— under BSD-style licence like Sphinx/Festival

O Release will include:
— core flite library
— plus basic USEnglish
— pruned lex based on cmulex
— 8 KHz diphone voice

O probable size:
— at about the 4M level
~ (i.e. about twice the size I'd like it to be)

flite2001

